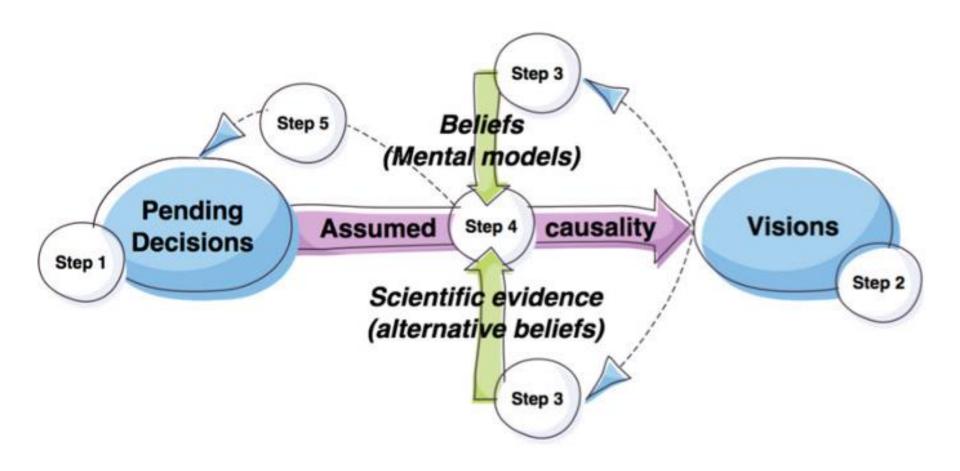


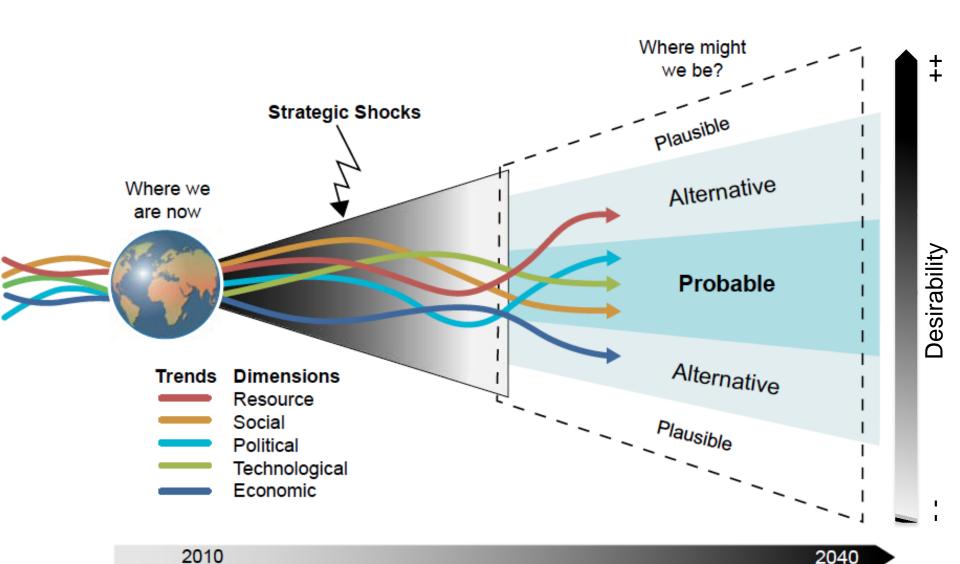
Mekong Region Futures Institute

Basin-level assessments –

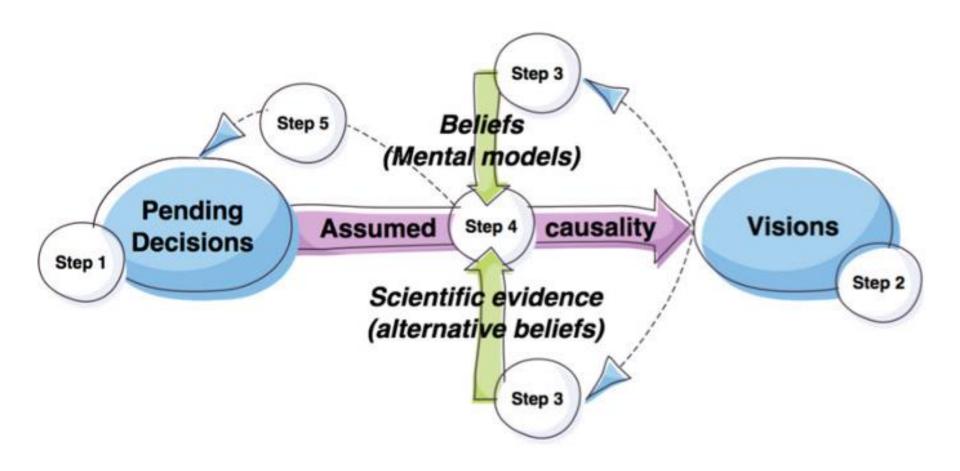

Tool & process design

Background

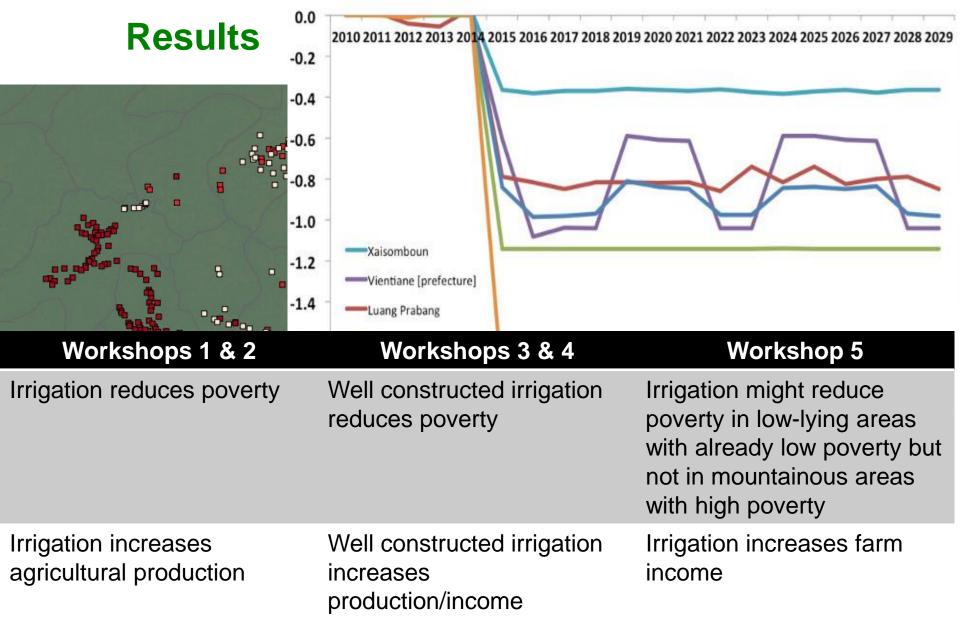
- Participatory process design improved over 15 years
- Applied to policy debates in 15 case studies in 7 countries
- Lao PDR Nam Xong: Mining-tourism, water quality/quantity
- Lao PDR Nam Ngum: Nexus, irrigation
- China Xishuangbanna: PES for rubber
- Vietnam Mekong Delta: SLR, upstream reservoirs, migration
- Cambodia Tonle Sap: Fish stock collapse, Poverty
- Thailand Isaan: Irrigation, energy vs food crops
- Indonesia East Kalimantan: Deforestation, mining, poverty
- Indonesia Central Java: Fishing, migration, poverty
- Australia Great Barrier Reef: Water quality, agriculture, reef
- Australia Outback: Water trading
- Australia Outback: Institutional arrangements, Cattle



The ChaRL process Challenge and Reconstruct Learning (ChaRL)

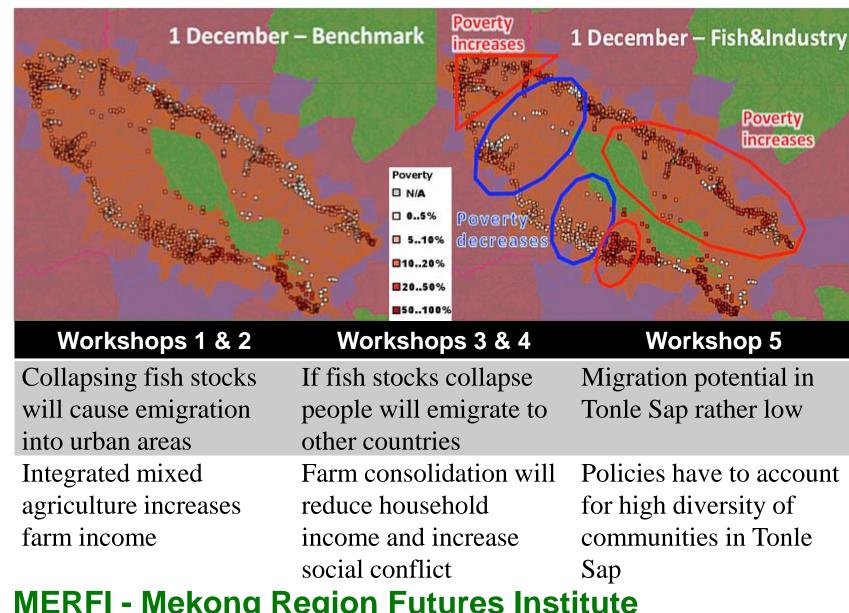


Mapping the space of future scenarios Plausibility & desirability



30 years

The ChaRL process Challenge and Reconstruct Learning (ChaRL)



Results

Lessons learnt

- Always combine development and climate change
- Stakeholders need to own the process
 - "High degree" participation essential for bridging the science policy gap
 - Maintain an honest engagement process
 - Stakeholders have to be actively involve in analytical work
- Psychological foundation seems very effective
 - Visioning essential for replacing sector normative benchmark
 - Most influence by contradicting unquestioned beliefs
 - Spatial representation (live maps) highly effective
- Mixes Methods
 - Considering complexity in analysis essential (i.e. ABM Simulation)
 - Household data for ground-truthing essential
 - Multiple validation techniques
 - Incorporate stakeholders' available methods

Thank You | alex.smajgl@MERFI.org

- > Smajgl A, Ward J, 2013. A framework to bridge science & policy... Futures, 52(8), 52-58.
- Foran T, Kemp-Benedikt E, Ward J, Smajgl A, 2013. A technique...foresight... *Ecology and Society*, 18(4).6.
- Smajgl, A. & Ward, J. (2015). A design ... research impact evaluation...
 Journal of Environmental Management, 157, 311-319.
- > Smajgl, A., Ward, J., Foran, T., Dore, J., & Larson, S. (2015). Visions, beliefs... Ecology and Society, 20(2):15.
- > Smajgl A, Xu, J, Egan, S., Yl, Z.-F., Su, Y., Ward J, 2015. ... PES... China Environmental Modelling and Software, 69, 187-195.
- Smajgl, A., Toan, T.Q., Nhan, D.K., Ward, J., et al. (2015). ...rising sea-levels ...
 Nature Climate Change, 5, 167-174.

Guidelines for conducting basin-level VAA

- Rationale for conducting a VAAs (why doing VAAs)
- Rationale for doing it basin-wide (CC manifests in water issues) (Basins capture scales. Relevant scales emerge from decision making.)
- What initiates a VAA?
- Why having guidelines? (Link to UNFCCC)
- For whom?
 - Main target: Researchers, practitioners/implementers,
 - Secondary: governments, planners, donors, local authorities
 -> multi-stakeholder
- (Best practice TORs, also drawn from these guidelines)
- Principles
- Process
- Tools
- Outputs: How does a good VAA look like? (Examples)
- Outcomes: What could/should be achieved? (Examples)

Towards a guideline: Principles

- Monitoring important (options, examples)
- Science often describes what hasn't been experienced yet
- Training is important
- · Simple is good
- Deal with uncertainty effectively
- Understand dynamics of the system and not preserve status quo
- Has to inform national policy (and regional processes) and target changes in decision making and behavior
- Be mindful of (consistent with) national policies
- Approach should be holistic and pragmatic (consider vested interests)
- Multiple scales need to be considered
- Multiple, interacting sectors need to be considered
- Work has to be participatory, inclusive, transparent ... (good governance)
- Climate change needs to be addressed in the proper context (future conditions, dynamic perspective...)
- Best available science should be used
- Climate change should not be analysed in isolation
- Stakeholders should confirm (groundtruth) the relevance of the science
- There have to be economic gains
- What are the key VAA variables (socio-economic, ecological, hydrological...) but MERiekt-direktong Region Futures Institute

Towards a guideline: Process

- Process has to be participatory to have impact
 - Considering where stakeholders want to go
- Scenario planning/visioning is a critical step
- Indicators need to be meaningful to stakeholders (communities) (i.e. onset of wet season, land use change, water balance...)
- Entry point not (only) climate change
- Overview: What processes/toolkits exist (examples)
- Context specific climate projections need to be utilised
- Integration of local knowledge and science
- Many interacting stakeholders
- Multiple scales need to be included
 - How: Approaches that allow engaging with multiple scales/sectors
 - Examples

Towards a guideline: Tools

- Issues are complex and complexity needs to be considered
- Combine mixed methods
- Localising (climate change) impact is critical
- Has to consider fail-safe dimension (maladaptation)
- Cost-effective
- Tools need to capture economic benefits
- Multiple scales need to be considered
- Modelling (give a menu of options & examples)
 - · Climate modelling, downscaling
 - CBA
 - RDM Robust Decision making
 - Spatial planning tools
 - Hydrological modelling
 - Crops
 - Socio-economics and poverty
 - Gender
 - Power analysis
- Scenario building and visioning
- Stakeholder consultation
- Tools for assessing the feasibility of adaptation options

